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PRECONDITIONING IN H(div) AND APPLICATIONS 

DOUGLAS N. ARNOLD, RICHARD S. FALK, AND R. WINTHER 

Dedicated to Professor Ivo Babuska on the occasion of his seventieth birthday. 

ABSTRACT. We consider the solution of the system of linear algebraic equa- 
tions which arises from the finite element discretization of boundary value 
problems associated to the differential operator I-graddiv. The natural 
setting for such problems is in the Hilbert space H(div) and the variational 
formulation is based on the inner product in H(div). We show how to con- 
struct preconditioners for these equations using both domain decomposition 
and multigrid techniques. These preconditioners are shown to be spectrally 
equivalent to the inverse of the operator. As a consequence, they may be used 
to precondition iterative methods so that any given error reduction may be 
achieved in a finite number of iterations, with the number independent of the 
mesh discretization. We describe applications of these results to the efficient 
solution of mixed and least squares finite element approximations of elliptic 
boundary value problems. 

1. INTRODUCTION 

The Hilbert space H(div) consists of square-integrable vectorfields on a domain 
Q with square-integrable divergence. This space arises naturally in the variational 
formulation of a variety of systems of partial differential equations. The inner 
product in H(div) is given by 

A(u, v) = (u, v) + (div u, div v), 

where (, ) is used to denote the inner product in L2. Associated to the inner 
product A is a linear operator A mapping H(div) isometrically onto its dual space, 
given by the equations 

(Au, v) = A (u, v) for all v e H(div). 

Just as the corresponding operator for the inner product in the Sobolev space H1 
may be considered as a realization of the differential operator I -A together with a 
homogeneous natural boundary condition, A may be thought of as a realization of 
the operator I - grad div with an appropriate boundary condition. More precisely, 
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if f E L2, then the operator equation Au f is equivalent to the differential 
equation 

u - grad div u = f in Q 

together with the natural boundary condition 

divu = 0 on &Q. 

Note that this is not an elliptic boundary value problem. When restricted to the 
subspace of gradient fields in H(div), A coincides with the second order elliptic 
operator I - A, while when restricted to the subspace of curl fields, A coincides 
with the identity. 

Given a finite element subspace Vh of H(div), we determine a positive-definite 
symmetric operator Ah: Vh -- Vh by 

(1.1) (AhU,v) = A(u,v) for all v e Vh. 

Then for any f E Vh, the equation 

(1.2) Ahu =f 

admits a unique solution u E Vh. Once a basis for Vh has been selected, this 
equation may be realized on a computer as a matrix equation. Our goal in this 
paper is the specification and theoretical justification of fast algorithms for solving 
this matrix equation. Specifically we shall show how either domain decomposition or 
multigrid techniques can be used to efficiently construct an L2-symmetric operator 
Oh: Vh -> Vh which is spectrally equivalent to the inverse of Ah, i.e., such that the 
spectrum of ehAh is bounded above and below by positive constants independent 
of the mesh discretization parameter h. It follows that the operator equation (1.2) 
can be solved efficiently by the conjugate gradient or other iterative methods using 
eh as a preconditioner. More precisely, the number of iterations needed to achieve 
a given order of accuracy will depend only on the spectral bounds, and so will not 
increase as the mesh is refined. 

Our interest in the efficient solution of (1.2) is motivated by its applications 
to numerous problems of practical import. As a very simple example, consider 
the computation of u = gradp where p is determined by the Dirichlet problem 
-A p+p = g in Q, p = 0 on &Q. Then u E H(div) satisfies A(u, v) = - (g, div v) for 
all v e H(div). Approximating u by Uh E Vh and restricting v to the same space 
gives (1.2) where (fv) -(g,divv). (We also remark that p can be computed 
from u as g + div u.) 

In ? 7 we will consider some more significant applications of (1.2). One such 
application is the solution of the linear algebraic system arising from a mixed finite 
element discretization of a scalar second order elliptic problem. Mixed finite element 
methods for such problems have been widely studied and applied, but the solution 
of the linear algebraic systems they engender is not straightforward. As we shall 
show in ? 7, this indefinite algebraic system has the same mapping properties as 
the block diagonal system whose blocks are Ah and the identity. (More precisely, 
the spectrum of the product of the inverse of this block diagonal operator and 
the indefinite operator arising from the mixed system is bounded above and below 
and bounded away from zero uniformly in h.) It then follows easily that if the 
system is preconditioned with a block diagonal preconditioner with blocks &Jh and 
the identity, then appropriate preconditioned iterative methods converge, with the 
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number of iterations needed to achieve a given error reduction independent of the 
mesh size. 

Another direct application of our results which will be discussed in ? 7 is the 
preconditioning of first order least-squares formulations of second order elliptic 
problems. The simplest such formulation, as discussed for example, in [25] and 
[13], leads to a system which has the same mapping properties as the block diagonal 
operator where the blocks may now be taken to be Ah and a discrete Laplacian. 
Hence a simple combination of our preconditioner with a standard preconditioner 
for the Laplacian will result in an efficient numerical method. 

We mention several other applications of our results which will not be discussed 
below. One is to the implementation of the sequential regularization method for 
the nonstationary incompressible Navier-Stokes system, introduced in [23]. As dis- 
cussed in ? 1 of [23], the SRM iterative method requires the solution of an equation 
of the form (1.2) at each timestep. There are also connections between our results 
and iterative solvers for the Reissner-Mindlin plate [1] and with the construction 
of fictitious domain preconditioners for the mixed finite element method [30]. Our 
construction and analysis of the preconditioner Eh is guided by the modern the- 
ory of multilevel and domain decomposition methods, as presented, for example, 
in [3] and [34]. However the operator A lacks a number of properties possessed by 
standard elliptic operators, and this necessitates a number of modifications to the 
theory. For example, in multigrid analysis it is often required that the eigenfunc- 
tions corresponding to the lowest eigenvalues of the operator can be well represented 
on a coarse mesh. This property is not true for A (since the curl of a highly os- 
cillatory function is an eigenfunction associated to the minimum eigenvalue). One 
consequence is that many of the simplest smoothers (e.g., the scalar smoother) 
do not work for multigrid solutions to (1.2). In fact, other investigators have no- 
ticed this failure, either through analysis or computation, and have concluded that 
multigrid is not suitable for the problem (1.2). See, for example, [12]. However 
our analysis, which takes account of the special properties of the problem, shows 
that this conclusion is unjustified: with an appropriate smoother, multigrid is as 
efficient for the operator A as it is for a standard elliptic operator. 

As indicated above, the operator A behaves very differently when applied to 
gradient fields than it does when applied to curl fields. This observation suggests 
that the Helmholtz decomposition of an arbitrary vectorfield into a gradient and a 
curl will provide insight. Particularly important in our analysis will be a discrete 
version of the Helmholtz decomposition that applies to functions in Vh. However 
it is important to note that we use the discrete Helmholtz decomposition only as 
a theoretical tool: it is not necessary to compute it when applying our algorithms. 
In this respect our approach differs significantly from that of Vassilevski and Wang 
[33]. They also study multilevel preconditioners for the equation (1.2). However, 
their methods require the use of projections into spaces of curl fields at all levels, 
and this leads to algorithms with more complex structures. 

After some preliminaries in ? 2, in ? 3 we introduce the finite element spaces 
we shall consider, namely the Raviart-Thomas spaces, and establish some new 
approximation properties for them. These results, which are intimately related to 
the discrete Helmholtz decomposition, will be crucial to the later analysis. ? 4 
and ? 5 are devoted to the construction of domain decomposition and multigrid 
preconditioners for the discrete approximations of the operator A, respectively. In 
? 6, we consider the extension of these results to related problems, namely when 
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the space H(div) is replaced by the subspace 

H(div) v E H(div): v n = 0 on &Q}, 

and also when the inner product in H(div) is replaced by a parameter dependent 
inner product given by 

A(u, v) = (u, v) + k2 (div u, div v), 

where k E (0,1]. The applications of these results to mixed and least squares 
systems is given in ? 7 and the results of some numerical computations are presented 
in ? 8. In an appendix, we sketch the additional arguments that are needed to 
extend some of the results to the case of non-convex Q, and in a second appendix 
we give the proofs of some basic lemmas from the theory of multigrid and domain 
decomposition. 

2. PRELIMINARIES 

We suppose that the domain Q is a convex polygon. For S C R2, we shall use 
the usual Sobolev spaces H'(S) with norm mS The notation H1(S) is used 
for the subspace of functions in H1 (S) which vanish on the boundary of S. When 
the set S coincides with QR we shall usually suppress it from the notation, and 
when the index m is zero, we shall usually suppress it. We use boldface type for 
vectors in R2, vector-valued functions, spaces of such functions, and operators with 
range in such spaces. Thus, for example, L2 denotes the space of 2-vector-valued 
functions on Q for which both components are square integrable. 

We shall use the standard differential operators 

grad= - &/&y) curl= -'/y div = (a/0x &/&y). 

We shall study an additive Schwarz preconditioner in ? 4 and an additive Schwarz 
smoother in ? 5. Here we briefly recall the definition of the additive Schwarz 
operator in a general setting and some properties of it which we will need. For 
this purpose let V be a Hilbert space which can be decomposed into a finite (but 
not necessarily direct) sum of closed subspaces: V = Ej Vj. Let B: V - V be 
a symmetric positive definite operator and let Pj V -* Vj denote the orthogonal 
projection with respect to the norm v t-- (Bv, V)1/2. The additive Schwarz operator 
may be written as 0) = Ej PjB-1. It is easy to see that e is L2-symmetric and 
positive definite. Moreover, for all v E V, 

(2.1) (E-1v, v) = inf (Bvj, vj). 
3 EV3 

Fj vj=v 3 

For the convenience of the reader, we include a proof of this result in Appendix B. 

3. FINITE ELEMENT DISCRETIZATIONS 

In this section we introduce the Raviart-Thomas finite element spaces. Let 
Th be a quasiuniform family of triangulations of Q, where h > 0 is a parameter 
representative of the diameter of the elements. For each non-negative integer r the 
Raviart-Thomas space of index r is given by 

Vh = {V E H(div): VIT E Pr(T) + (xy)Pr(T) for all T E Th}. 
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FIGURE 1. Degrees of freedom for the Raviart-Thomas spaces of 
indices 0, 1, and 2 approximating H(div). The arrows indicate the 
value of the normal component and the double dots the value of 
both components. 

Here Pr (T) denotes the set of polynomial functions of degree at most r on T. A 
vectorfield in Vh is uniquely specified by giving its value at a triangular array of 
r(r + 1)/2 points in each triangle and the value of its normal component at r + 1 
points on each edge of the triangulation. Figure 1 shows the element diagram for 
Vh in the three lowest order cases. 

We shall also introduce two other finite element spaces: 

Wh = {S E HI: SIT E Pr+i(T)} 

is the usual space of continuous piecewise polynomials of degree r + 1 and 

Sh = {q E L': qT E Pr(T)} 

the space of arbitrary piecewise polynomials of degree r. It is easy to see that 
div Vh C Sh and that curl Wh is precisely the subspace of divergence free vector- 
fields in Vh (cf. [101): 

{V E Vh: divv=0} = {curls: s E Wh}- 

Defining the discrete gradient operator gradh : Sh -- Vh by the equation 

(3.1) (gradhq,v) = -(q, divv), for all v E Vh, 

we immediately deduce the discrete Helmholtz decomposition (cf. [11]) 

(3.2) . Vh = gradh Sh E curl Wh, 

where the decomposition is orthogonal with respect to both the L2 and the H(div) 
inner products. Note that the two summand spaces gradh Sh and curl Wh are 
invariant under the action of Ah. 

It is also well known (cf. [10] or [26]) that the pair of spaces (Vh, Sh) satisfies 
the inf-sup condition 

(3.3) inf sup (dv v 
q) > 'Y > 01 

qCSh VCVh JVj H(div)IjI 

with the constant ty independent of h. The inf-sup condition follows from the 
existence of the interpolation operator 11h : H1 -> Vh having the commutativity 
property 

divIh = Qhdiv, 
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and the approximation property 

IU - HhUll < chllulll, for all u E H1. 

Here Qh: L2(Q) -> Sh is the L2-projection onto Sh. In fact, the standard con- 
struction of 11Ih determines it triangle by triangle from moments of u n on the 
triangle edges and moments of u on the triangles. Therefore HhU is defined for all 
u E H(div) for which uIT E H1(T) for all T E T, and for such u, 

||U- HhUII0,T < chl|u 1,T i 

Observe that (3.3) implies that gradh is injective on Sh. 

The Raviart-Thomas mixed method to approximate the solution of the Dirichlet 
problem 

(3.4) App= f on Q, p= 0 on &Q, 

determines (Uh,ph) E Vh x Sh by the equations 

(Uh,V) + (divv,ph) = 0 for all v E Vh, 

(divUh,q) = (f,q) for all q E Sh. 

An equivalent formulation is 

Uh = gradh Ph, divUh = Qhf- 

The inf-sup condition implies that this is a stable numerical method in the sense 
that 

IjUhIIH(div) + IlPhll <? ClIfl 

for some constant C independent of h and f. Moreover the following estimates are 
known for this method (see, e.g., [20]): 

(3.5) |Iu-Uh < ? u- Hhull < chk I|Ulk, k=1,2,... ,r +1, 

(3.6) IIP-Ph 1 < chPk||P|k, k = 2,3,... ,r+1, 

(3.7) IIP-Ph 11 < C(hlPKl 1 + h2 IIPI12). 

To close this section we consider the following situation. Suppose that a second 
quasiuniform mesh TH of Q with mesh size H > h is given and define corresponding 
spaces VH, SH, and WH. Let QH : L2 -> SH and PH : H(div) -> VH denote 
the L2- and H(div)-projections, respectively. The following results, which will be 
crucial to the analysis in ?? 4 and 5, concerns the approximation of functions in Sh 
and Vh by those in SH and VH- 

Lemma 3.1. Let Ph E Sh, Vh = gradh Ph E Vh. Define PH E SH and VH E VH 

by 

VH = gradH pH, div VH = QH div vh. 

Then 

(3.8) PlPh-QHPh < cHII gradhPhl|, 

(3.9) ||Vh-VH |cH < cHI div Vh |l, 

(3.10) IVh -VH IIH(div) ?< CH|AhVh Il, 

where the constant c is independent of h and H. 
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Proof. Define p E H1 (Q) by A p = div gradh Ph and v = grad p. Then 

IIpI 1 < c|l gradhpPh 11, IIPI12 < c|| div gradh Ph || < ch1 | gradh Ph 

Moreover (Ph, Vh) is the mixed method approximation to (p, v) in the space Sh X Vh 
and (PH, VH) is the mixed method approximation to (p, v) is SH X VH. 

To establish the first inequality, we apply the triangle inequality, (3.7), the stan- 
dard approximation property of QH, and the a priori estimates for p to write 

IPh - QHPhII < IMI -PII + IIQH(P-Ph) ?+ IIP- QHPII 
< c(hIlplij + h2IIpI12 + H||p|I|) < cH|| gradhph|. 

Applying (3.5) and noting that JvIl I < IIPI12 < cll divvh 11 gives 

|v- Vh II< ch|| divVhH1, |V - VH ?I< cH|| divVh 11, 

and another application of the triangle inequality gives the second estimate. 
Substituting div Vh for Ph in the first estimate then gives 

11 divvh- divVH 11 < cH gradh divVh 11 

Combining this with the previous estimate gives 

|Vh -VHIIH(div) < cH(H divVhH| + 11 gradh divVh||). 

Since 

||AhVh 112 = IVh 112 + 211 divVh 112 + |gradh divvh 112, 

this establishes the third estimate. El 

The key point in the next lemma is the gain of a power of H without bringing 
in the full H1 norm of u -PHU. 

Lemma 3.1. Suppose U E Vh and that U - PHU E Vh has the discrete Helmholtz 
decomposition 

u -PHU = gradh p + curls, 

for some p E Sh and S e Wh. Then 

| gradhP|? + ||SI| < CH||u-PHU IIH(div), 

where c is independent of H. 

Proof. Clearly 

(3.11) | gradh P112 = A(gradh P Vh), 

where Vh = A-' gradyp. Since Ah maps gradySh onto itself, we have Vh E 

gradh Sh, so 

(3.12) A(gradhPvh) = A(u - PHU, vh)- 

Defining VH E VH as in the previous lemma then gives 

Vh - VH |H(div) < cHj|Ahvh | = cH|| gradhP||, 

so 

(3.13) 
A(u - PHU,Vh) = A(u - PHU,Vh - VH) <?u - PHUIIH(div) Vh - VHIIH(div) 

< cH||u - PHUI H(div) gradh P11 
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The desired bound for IIgradhPI follows directly from (3.11), (3.12), and (3.13). 
Observe also that 

(curl s, curl@b) = A(u - PHu, curl b) = 0 for all b E WH. 

Therefore, by a standard duality argument, 

||s|| < cHH| curls|| < cHu - PHU||H(div). 

LI 

4. DOMAIN DECOMPOSITION METHODS 

In this section we shall construct domain decomposition preconditioners for the 
operator Ah given by (1.1). We first define the additive Schwarz operator and show 
that it is an effective preconditioner by bounding its spectrum above and below. 
At the end of the section we define a multiplicative Schwarz operator and derive 
bounds on its spectrum from those for the additive operator. To the extent possible, 
we follow the standard analysis for second order elliptic operators (cf., for example, 
Dryja and Widlund [18], [19] or Xu [34]), but some modifications are required in 
order to handle the degeneracy of the operator. 

Let TH = {Q3}J_1 be a coarse quasiuniform triangulation of Q with characteristic 
grid size H, and let Th be a quasiuniform refinement of TH with characteristic grid 
size h < H. Furthermore, let {QI}J_1 be a covering of Q such that for each j, Q/ 
is a union of triangles in Th and Qj c Q/.. It is also useful to set So = Q/ = Q and 
Fj/= &Qj \ &Q. We shall make the standard assumptions of bounded but sufficient 
overlap: 

(Al) There is a constant s31 such that each point of Q is contained in at most s31 
of the sets Q/. 

(A2) There is a constant /2 > 0 such that dist(IF, Qj) > /2H. 

Let Vh, Wh, and Sh be the finite element spaces introduced in ? 3, so that Vh 
is the Raviart-Thomas space of index r with respect to the triangulation Th and 
the discrete Helmholtz decomposition (3.2) is satisfied. The same spaces formed 
with respect to the coarse mesh TH will be denoted V0, Wo, and So. (It is also 
possible to use instead the Raviart-Thomas spaces of index 0 on the coarse level 
mesh without affecting any of the results we are about to establish.) 

Forj=1,2,...,Jset 

Vi { v E V: v _ 0 on Q\Q2 }, 
W3 ={w E W: w _ 0 on Q\Qj }, 

S { q E S: w -0 on Q \ Q/ }. 
Consider the domain Q/ with the triangulation induced by Th, and the Raviart- 
Thomas space of index r approximating H(div, Q/). Imposing the essential bound- 
ary condition v n = 0 on V. determines a subspace in which the degrees of freedom 
corresponding to nodes on V. are set equal to zero. We may imbed this subspace in 
Vh C H(div) via extension by zero from Q/ to Q and this is the space Vj. Simi- 
larly, identifying functions on Q/ with their extension by zero to Q, Wj is the usual 
Lagrangian finite element space of degree r + 1 approximating the H1 (Q/) functions 
which vanish on F/ and Sj is the usual space of discontinuous piecewise polyno- 
mials of degree r approximating L2(Q/). We may then define a discrete gradient 
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operator gradj: Sj -Vj as in (3.1) and the discrete Helmholtz decomposition 
Vj = gradj Sj + curl Wj holds. 

We use the decomposition Vh = EJ Vj to define an additive Schwarz pre- 

conditioner, eh: Vh -> Vh, as described in ? 2. That is, eh = EJ PjAh- 
where Pj: Vh -> Vj is the H(div)-orthogonal projection, or, in other words, 

ehf = 0 J uj where uj E Vj solves the subdomain (j > 0) or coarse mesh 

(j = 0) problem 

A(uj,v) = (f,v) for all v E Vj. 

To establish the effectiveness of this preconditioner, we need to provide bounds 
from above and below on the spectrum of 

J 

P := OhAh = ZPj. 

j=0 

Such bounds are a direct consequence of the following theorem. 

Theorem 4.1 . There is a positive constant c (depending on the domain Q, the 
overlap constants 31 and 32, and the shape and quasiuniformity constants for the 
meshes Th and TH, but otherwise independent of h and H), such that 

c-1A(u, u) < A(Pu, u) < cA(u, u) for all u E Vh. 

Proof. First we shall establish the second inequality with c= /31. By the Cauchy- 
Schwarz inequality, it is enough to show that 

(4.1) A(Pu, Pu) < 31 A(Pu, u). 

Let Xj be the characteristic function of Qj so || EJ-o X2 ||LO = 11 EZ=0 Xj ||LO < 1. 
Since Pu = EJ= Pju = o XjPju and divPu = EJ div PjU, 

J 

A(Pu, Pu) = Xi xixj[(Piu)(Pu) + div(Piu) div(Pju)] dx 
i,j=o 

J 

- S X (iPj u)(XjPiu) + [Xi div(Pju)][Xy div(Piu)] dx 
i,j=o 

< { X 2[lpjPU2 + ? div(Pju) 12] dx} {j 2j [Pu12 + ? div(Piu) 2] dx} 

J 
< E J y2[lPju2 + ? div(Pju)12] dx 

i,j=o 
J J 

< i31 i A(Pju, Pju) = 31 , A(Pju, u) = /31A(Pu, u), 
j=a j=e 

as desired. 
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The key to establishing the first inequality is showing that we can decompose 
any u E Vh as _ 0 uj with uj E Vj and so that 

(4.2) ZA(uj, uj) < cA(u, u) 
j=O 

Assuming this result momentarily, the completion of the argument is standard: 

J J 

A(u,u) = ZA(uj,u) = ZA(uj,Pju) 
j=o j=o 

i ~~1/2 F 1/2 

< E A (uj, j)] A(Pju, Pju) < [cA (u U)] /2 A(P, U) 1/2. 

Lj=o Lj=o 

To define the decomposition of u, we first use the Helmholtz decomposition 
to write u = gradh p + curl w, with p E Sh and w E Wh normalized so that 
f w = 0. We shall decompose each of the summands independently. The decom- 
position of curlw follows from the usual procedure to decompose w E H1 which 
arises in the theory of domain decomposition for standard elliptic operators (cf. [34, 
Lemma 7.1]). Using this procedure we may write w as E _ 0 wj with wj E Wj and 

J-_ ||Wj||2 < C||W|12. Then curlwj E Vj, curlw = EJZ curlwj, and 

J J 

SA(curlwj,curlwj) < I HwjH12 < c11wI 2 < c(curlw,curlw) 
j=O j=o 

= cA(curl w, curl w) < cA(u, u). 

It thus remains to decompose v := gradh p as E Jvo Vj with v; E Vj such that 

(4 3) 5A(vj, v;) < cA(v, v). 
j=o 

First define (vo,po) E Vo x So by vo = gradopo, divvo = Qodivv, where Qo 
is the L2-projection into So. Next let f Oj be a partition of unity subordinate 
to the covering Q' of Q so that 

J 

S j --1, o<O?l, supp(0j) C Q. 

j=1 

In view of the sufficient overlap condition (A2), we can choose {fO} such that 

(4.4) 11 grad Oj If L < cH- 1. 

We then set v; = HIh[Oj(v - vo)]. By construction v = EJ Vj. Defining uj = 

curl wj + vj, we have 

J J 

5A(uj, uj) < 2 [A(curl wj, curl wj) + A(vj, vj)] . 
J=o j=o 
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Since A(v, v) < A(u, u), the proof of the theorem will be complete if we can show 
(4.3). Now for j > 0, 

fJlVjl < flllh[0j(V - VO)] - Oj(v - Vo)fl + f0l(V - Vo)fl 

? chjI grad [0j (v - vo)] 11 + I (v - vo) 11 

? ch[lI gradOj flL- oV - VO 1L2(Qo) + fl0j flL O| gradsh(v -o)IIL2(Q0')] 

+ II0jIILo|IIV-VoIIL2(Q[) < cIIV-VoIIL2(Q/). 

Here grad 
T 

denotes the gradient applied elementwise with respect to the elements 
in Th, and we have used an inverse inequality, the boundedness of Oj, and (4.4) in 
the last step. 

Now 

Ildivlh[0j(v - vO)]Il < | div[Oj(v -vo)]II = 11 div[Oj(v -vo)]IooQ 

< gradja JIL- flV - vo|IoQ + I10jflL- fldiv(v - vo)looQ 

< c(H1jjv - volloQ, + 11 div(v - vo)Ijoo,'). 

Squaring and adding over j, and using (Al) gives 
J 

(4.5) ZA(vj,vj) < c[(l + H-2)1v1- vo02 ? fl div(v - vo)112]. 
j=l 

Since div vo = Qo div v, it follows easily using Lemma 3.1 that the right-hand side 
may be bounded by cA(v, v). This completes the proof. O 

We remark that in using Lemma 3.1, we require that the domain Q be convex. 
In fact, this restriction may be eliminated by using a more complicated argument, 
which we present in Appendix A. 

We shall now discuss the corresponding symmetric multiplicative Schwarz pre- 
conditioner eh: Vh -- Vh. The results for this preconditioner follow by a standard 
argument from those derived above for the additive preconditioner (cf. for example 
Bramble, Pasciak, Wang, and Xu [7] or Xu [34]). We recall the definition of the 
multiplicative Schwarz operator eh. For a given f E Vh we let e'hf = VJ E Vh, 

where the v3 are defined by the iteration 

V-J-l = 

(4.6) v3 = v -1 - P1j, (vi-1 - Aj-1f), j = -J. -J + 1. ... , J. 

If we let v = Aj-1f, then it follows from the iteration above that 

v - Vj = (I - P1j3)(v -vj-1 

Hence, if we let E: Vh -* Vh denote the operator 

E = (I- Po) - P .. (- PJ)7 

then 

I - ehAh = E*E, 

where E* is the adjoint of E with respect to the inner product A(., ). This imme- 
diately implies that 

(4.7) A([I -6hAh]U, {) = A(Eu, Eu) > 0 for all u E Vh, 

and hence the spectrum of ehAh is bounded above by one. 
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A lower bound on the spectrum of ehAh can be derived from an upper bound 
of A(Eu, Eu). Define operators 

Ej = (I -Pj) (I -Pj+0) . .. (I -PA) for j = 0, 1, . .. J. 

Hence E0 = E. Furthermore let Ej+j = I. Observe that 

A(Eju, Eju) = A([I - Pj]Ej+liu, Ej+lu) 

= A(Ej+lu, Ej+lu) - A(PjEj+lu, Ej+lu). 

Therefore we obtain 
J 

A(Eu, Eu) = A(u, u) -E A(PjEj+lu, Ej+lu). 
j=o 

Combining this with (4.7) we have 

J 

(4.8) A(ehAhU, u) = E A(PjEj+lu, Ej+lu). 
j=0 

The desired lower bound for the spectrum of ehAh will essentially follow from the 
identity (4.8) and the corresponding bound for the additive operator derived above. 
In order to see this, observe first that from the relation Ej = (I - Pj)E3+1 we 
obtain 

J 
I = Ej + E PiEj+2 . 

i=j 

Therefore, since PjEj = 0 we have 

J J J 
(4.9) A(Pu, u) = E A(Pju, u) = E A(Pju, PiEi+iu). 

j=0 j=0 i=j 

By arguing as in the derivation of (4.1), it now follows from the Cauchy-Schwarz 
inequality and the overlap condition (Al) that 

J J J12 
E S A(Pju, PjEj+ju) < 03A(Pu, u)1/2 [ A(PjEj+lu, Ej+lu)] 
j=o i=j j=0 

Together with (4.9) this implies that 

J 
(4.10) A(Pu, u) < /32 E A(PjEj+lu, Ej+lu). 

j=0 

Hence, by combining (4.8), (4.10), and the left inequality in Theorem 4.1, we obtain 

(4.11) A(ehAhU ,U) > /3T2A(Pu, u) > (c32) -1A(u, u) for all u E Vh. 

We summarize this discussion of the multiplicative Schwarz operator in the following 
theorem. 

Theorem 4.2 . The spectrum of the operator ehAh is contained in an interval 
[1 - 8,1], where the positive constant 8 is independent of h and H, but depends on 
the overlap constants /1 and /2- 
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As a corollary of the discussion which led to Theorem 4.2, we also obtain the 
following relation between the multiplicative operator eh and the corresponding 
additive operator oh which will be used in the next section. 

Corollary 4.3. Let 01 > 0 be given by the overlap condition (Al). Then 

(OhV, V) > p (ehV v) for all v E Vh- 

Proof. From (4.11) we have 

(EhAhU, AhU) > 3 ((EhAhu, AhU) for all u E Vh. 

The result follows by setting v = Ah1u. LI 

5. MULTIGRID METHODS 

In this section we define a V-cycle multigrid preconditioner oh for the operator 
Ah using an additive Schwarz smoother formed by summing solutions to local 
problems in a neighborhood of each mesh vertex, and we show that the operator 
I - EhAh is a contraction uniformly with respect to h, and, a fortiori, that oh is 
spectrally equivalent to A-1. At the end of this section, we show that an analogous 
result holds for the multiplicative Schwarz smoother. 

We begin by recalling the multigrid V-cycle construction in an abstract setting. 
For this discussion the notation is independent of the rest of the paper. Let Vi C 
V2 C ... C VJ be a nested sequence of finite dimensional subspaces of a Hilbert 
space H, and let A: Vj x Vj -) R be a positive-definite symmetric bilinear form. 
Forj = 1,2,... ,J define Aj :1V3 -, V3 by 

(Ajv, w) = A(v, w) for all v, w E V13, 
where the pairing on the left-hand side is the inner product in H. Also let Qj 
Vj -) / V3 denote the H-orthogonal projection and Pj: VJ -)/ V3, the orthogonal 
projection with respect to the bilinear form A. Finally, suppose that we are given 
for each j > 1 a linear operator R3: V1 -- V1. As will be clarified below, Rj, the 
smoother, is intended to behave in some ways like an approximation to A-1 

For a fixed positive integer m, the standard V-cycle multigrid algorithm with m 
smoothings recursively defines operators e : Vj -- Vj beginning with 61 = A-' 
For j > 1 and f E V1 we define E)jf = X2m+l where 

X0 = 0 E V1/, 

xi = xi_1 + Rj (f - Ajxi), i = 1, 2, ... ., m 

Xm+l = xm + ej~-Qj~-(f - Ajxm), 

xi =xi1+Rj(f-A3X'1i), i= m+2,m+3,... ,2m+1. 

Note that if Rj is H-symmetric, as we shall assume, then so is a . 
The following result is useful for establishing the convergence of the V-cycle 

algorithm. It was proved in a special case by Braess and Hackbusch [2] and can 
easily be adapted from the proof of Theorem 3.6 in [3]. For the convenience of the 
reader, we provide a proof in Appendix B. 

Theorem 5.1. Suppose that for each j = 1, 2, ... , J the smoother R3 is H-sym- 
metric and positive semidefinite and satisfies the conditions 

(5.1) A([I - RAj]v,v) > 0 for all v E V1 
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and 
(5.2) 

(R7 1[I- Pj-]v, [I-Pji,]v) <caA([I-Pj-i]v, [I-PPj-]v) for all v EVj, 

where aZ is some constant. Then 

0 < A([I - EjAj]v,v) < SA(v,v) for all v E Vj 

where 6 = a/(a + 2m). 

Corollary 5.2 . Under the hypotheses of the theorem, the error operator I -jAj 
is a positive definite contraction on Vj whose operator norm relative to the A inner 
product is bounded by 6. Moreover the eigenvalues of OjAj belong to the interval 
[1 -8,1]. 

Thus we have, in particular, that ej is spectrally equivalent to 
A-1. We wish to apply this abstract theorem to the case where H = L2, VJ = Vh is 

the Raviart-Thomas space of index r > 0 relative to the triangulation Th, and A 
is the H(div) inner product. In order to define the nested sequence of subspaces 
V, we assume that the triangulation Th is constructed by a successive refinement 
process. More precisely, we assume that we have a nested sequence of quasiuniform 
triangulations Tj, 1 < j < J, with characteristic mesh size hi proportional to 1y2j 
for some positive constant -y < 1, and that Th = Tj. It is easy to check that 

V1 C V2 C C VJ = Vh 

where Vj is the Raviart-Thomas space of index r relative to the triangulation 19. 
(Note, that Vj in this section has a different meaning than it had in the preceding 
one.) At each level j we have the discrete operator Ai: Vj -* Vj defined as in 
(1.1) and the L2- and H(div)-orthogonal projections onto Vj, which we denote by 
Qj and Pj, respectively. Also, using the triangulation 19 we may define the spaces 

Wi and Sj and the discrete gradient operator grad : Sj - Vj so that the discrete 
Helmholtz decomposition 

Vj = gradj Si @ curl Wi, 
holds. Thus there exist maps F3: Vj -* W3 and Gj: Vj - Si, so that 

u = gradj(Gju) + curl(Fju) for all u E Vj. 

To complete the description of the multigrid algorithm, we must define the 
smoothers. We shall discuss both additive smoothers Rj and multiplicative smooth- 
ers Rj. The additive smoother Rj: Vj -* Vj will be defined as a multiple of the 
additive Schwarz operator formed with respect to a decomposition of Vj which we 
now describe. Let XiE be the set of vertices in the triangulation 7j, and for each 
v E AXj let 7j,, be the set of triangles in 19 meeting at the vertex v. These form 
a triangulation of a small subdomain which we denote Qj,,. The family of subdo- 
mains {Qj,,},E~r forms an overlapping covering of Q as did the family {Qi}J=1 
of the preceding section, and we define a decomposition of Vj, WVj, and Si as we 
did there: Vj,,, Wj,,, and Sj,, are the subsets of functions in Vj, WVV, and Sj, 
respectively, which are supported in Qj,,. Note that the finite overlap condition 
certainly holds: no point belongs to more than three of the Qj,,. Then we define 

(5.3) Rj= Pj,,Aj- 
VZJA3 
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as the additive Schwarz operator multiplied by a scaling factor of 7j > 0. The 
implementation of Rj is easy: on each of the small domains (each consisting of 
only a small number of elements, whose number does not grow with decreasing h or 
increasing j) one must solve the restricted discrete variational problem with Dirich- 
let boundary conditions on the subdomain boundary (except where the subdomain 
boundary coincides with the domain boundary), and the scaled sum of these solu- 
tions gives the value of Rj. As discussed at the end of ? 2, Rj is L2-symmetric and 
positive definite and 

(5.4) 'I(R7lv,v) = inf E A(v,,v>). 

In the remainder of this section we show that if 0 < 
7j 

< 1/3, then the scaled 

additive Schwarz smoother (5.3) satisfies the conditions of Theorem 5.1 and so the 

conclusions of that theorem and of Corollary 5.2 are satisfied. 

For v E Vj, 

A([I - Rjj]v, v) = A(v, v) - r, E A(Pj,mv, v). 
VEAij 

But 

A(Pj,mv,v) = 1Pj,'VH1(diV ) < HIVIlH(div,Qa,,)HlPj,lVIH(div,Qj,,), 

so 

S A(Pj,mv,v) < S IV ?12 < 3A(v, v). 
ZE~j VEXJ3 

Thus the hypothesis (5.1) holds. 

Thus, it only remains to establish (5.2), which, in view of (5.4) reduces to showing 

that for v = (I - Pji)u, u E Vj, we can decompose v as El, vM with v, E Vj,,, 

such that 

(5.5) 5 A(v,, v>,) < cA(v, v). 
V7A/j 

We use the discrete Helmholtz decomposition to write 

v = v + v := grady Giv + curl FjV, 

and decompose the two pieces separately. 

First we consider v- := grady Gjv. Letting {Ov}vGJ denote a partition of unity 

subordinate to the covering {Qj,,, },,, we set . = HI(Ovi). Then El = >j> 
and, arguing as at the end of the proof of Theorem 4.1 (with H = hj and vo = 0), 

we get 

(5.6) E A(v-jv) < C(iVflH(diV) + h. I2vHi). 

Clearly K]t[1H(div) < flV||H(div) and by Lemma 3.2, ||v|| < chjj|vflH(div), so 

5 A~vi, j>) < ClltllH(div). 
VZAij 
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Next consider iv = curl Fjv. Using a standard decomposition argument (as in 
[34, Lemma 7.1]) we may write Fjv = so, where s, E Wj,, and 

S (curl s, curl s,) < C[(curl Fjv, curl Fjv) + hjF-2 IFjvl12]. 
EJfi3 

Recalling that v = u - Pj1u = gradh Gjv + curl Fjv, we have from Lemma 3.2 
that 

jjFjvjj < ChjA(vV)1/2. 

Setting 6,, = curl sz, so v = Zd vi, and combining these results, we obtain 

E A(iv,,v>) = E (curl s,, curl s>) < CA(v, v). 
vCAj WEAP{ 

Finally, setting v,, = v,, + iv,, we get that v = E v,, and that (5.5) holds. This 
completes the verification of the required properties of the smoother. 

Next we consider the corresponding multiplicative preconditioner Rj: Vj -- Vj. 
This operator is defined by an algorithm of the form (4.6) with respect to the spaces 
Vj,,,. By construction (cf. (4.7)), these operators satisfy (5.1). Furthermore, by 
Corollary 4.3, the operators Rj and Rj satisfy 

(5.7) (Rjv, v) < 9q(Rjv, v) for all v E Vh. 

In order to verify (5.2) for the multiplicative operator, again let v = (I -Pj_ ) 

u E Vj, and decompose v as YEl VW, with v,, E Vj,,, satisfying (5.5). Then, by 
the Cauchy-Schwarz inequality and the definition of the additive smoother Rj, we 
have 

(Rj v7)= 5 A(Pj,WAjlRj v,v,) 
WCA/3 

? [5 A(PjA71R-1v, AlRJ lv)] [L A(vW,,vW)]~ 

= R v, R~ 1v)1/2 [S A(VW VW)] 1/2 

vC~fj 

Hence, from (5.5) and (5.7) we obtain 

(Rj V, v) < c(Rj 1v, v) A(v V1/ 

which implies (5.2). 

6. EXTENSIONS 

We now consider two extensions of the results obtained in the previous sections. 
First we remark that the entire analysis of ?? 3-5 adapts easily to the case where 
the space H(div) is replaced by the subspace 

H(div)={ v E H(div): v n = O on OQ}. 

In this case, the finite element spaces Vh, Wh, and Sh are replaced by Vh n H(div), 
Wh n H1, and Sh n L2, respectively, and the Dirichlet problem (3.4) is replaced by 
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the Neumann problem 

A p = f on Q, Op/On = O on OQ, jpdx = O. 

(Here L2 denotes the subspace of functions in L2 with mean value zero.) 
Second, we consider the case where the bilinear form A is redefined as 

(6.1) A(u, v) = (u, v) + k2(div u, div v), 

where k E (0, 1] is a parameter. (An application of this case will be discussed in 
the next section.) The results of ?? 4 and 5 continue to hold in this case, moreover, 
with the spectral bounds now independent of k as well as h. In order to prove such 
results, some small modifications to the preceding analysis are required. We now 
discuss these modifications. First we define the norm 

JIVIIA= [A(v,V)]1/2. 

In the case when k = 1, this is the norm lIvIH(div). The first change we need occurs 
in Lemma 3.1, where we need to replace the estimate 

|Vh - VHHIH(div) < cHIHAhVh || 

by the estimate 

(6.2) |Vh - VH||A ? cHk1 IAhVhIl 

The proof of this result is completely analogous to the previous one. 
Similarly, in Lemma 3.2, we need to replace the estimate 

11 gradhPII + 1S1 <? CH|U - PHUIIH(div) 

by the estimate 

(6.3) I gradhp11 + 1s1 < cHHk1 H1u- PHU|A. 

Using (6.2), the proof of this result is completely analogous to the previous one. 
Turning now to ? 4 on domain decomposition, the proof of the second inequality 

in Theorem 4.1 carries over directly once k is introduced. The proof of the first 
inequality carries over directly until (4.5), for which the obvious replacement is 

ZA(vj,vj) < c[(1 + k2H-2)V _ V01o2 + k2 1 div(v -VO) 2]. 
j=1 

When H < k, we can complete the proof essentially as before using Lemma 3.1 to 
obtain from the above 

J 

S A(vj, vj) < c[H2 + k2] 1I div V112 < cA(v, v). 
j=1 

When k < H, we replace the vo defined previously by vo = 0. Then 
J 

5A(vj,vj) < c[v1- voH12 + k21I div(v - vo)H2] < cA(v,v). 
j=1 

Turning to the section on multigrid, we need only check that the smoother still 
satisfies the conditions of Theorem 5.1. The proof of (5.1) is the same, requiring 
only the replacement of the 11 * IIH(div) norm by the more general 11 11A norm. To 
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establish (5.2), we proceed as previously, obtaining instead of (5.6), the obvious 
replacement 

S A(v -v) < C(k2hi2livfl2 ? flvl2 +k2fl divvil2). 
JE'V3 

Applying (6.3), we get EiII < chik - lvlIA. Since Iv-1l < flvfl and 11 div ill = 1f divvIl, 
it follows immediately that 

S A(v>i v>) < CflvI1. 

The remainder of the proof is unchanged. 

7. APPLICATIONS 

In this section we give examples of how the preconditioners e(h constructed in 
the previous sections can be used to develop efficient solution operators for the 
linear systems that arise from some finite element procedures. 

To explain our approach, we first consider the abstract problem of finding Xh 
belonging to a normed finite dimensional vectorspace Xh and satisfying 

(7.1) AhXh = Ah, 

where Ah is a self-adjoint linear operator from Xh to its dual X* and fh E X* 
is given. We think of Ah as coming from some discretization of a boundary value 
problem using finite elements of mesh size h and assume that the operator norms 

(7.2) Klv4hflL(Xh,x*) and K-h flL(XhXh) are bounded uniformly in h. 

In order to solve (7.1), we will use an iterative solution algorithm preconditioned 
by a positive-definite self-adjoint operator Bh: X* -* Xh. For example, we may 
use a preconditioned minimum residual iteration, or, if Ah is positive-definite, a 
preconditioned conjugate gradient iteration. Such an iterative scheme is efficient if 
the action of the Bh can be computed efficiently and if the magnitude of the eigen- 
values of BhAh can be bounded above and below by positive constants independent 
of h (this last property insures that the number of iterations needed to achieve a 
given factor of reduction of the error is bounded). Now, in light of (7.2), the desired 
eigenvalue bounds will follow if 

(7.3) 1163hILc(X*,Xh) and |I8h I(Xh,X*) are bounded uniformly in h. 

Thus to efficiently solve (7.1), we simply require a computable positive-definite 
operator Bh for which (7.3) holds. We remark that the preconditioner Bh can be 
constructed without reference to the detailed structure of the operator Ah, but 
depends only on the norm in Xh. 

As a first example, consider an elliptic boundary value problem of the form 

(7.4) div(agradp) = g in Q, p= 0 on OQ. 

The data g is assumed to be L2(Q), while the coefficient matrix a = {aij(x)}1Ji= 
is assumed measurable, bounded, symmetric, and uniformly positive-definite on Q. 

Introducing the variable u = a grad p, we obtain the first order system 

(7.5) u-agradp=OinQ, divu=ginQ, p = O on OQ. 
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A simple least squares approach characterizes (u, p) as the minimizer of the func- 
tional 

J(v, q) = 1v -a grad q11? + 11 div v-ggl' 

over H(div) x H1. Defining B: [H(div) x H1] x [H(div) x H1] - Jt by 

B(u, p; v, q) = (u-a gradp, v-a grad q) + (div u, div v), 

it is easy to see that (up) c H(div) x H1 is determined by the weak equations 

B(u, p; v, q) (g, div v) for all (v, q) E H(div) x H1. 

In [25] (and, in greater generality, in [13]), it is shown that this bilinear form is 
symmetric and positive-definite, and so defines an inner product on H(div) x H1 
equivalent to the usual one. 

By restricting the minimization to a finite dimensional subspace Xh C H(div) x 
H1, we obtain an approximate solution, (Uh,Ph) E Xh. The convergence of this 
procedure was established for a wide variety of finite element spaces in [25]. Defining 
Ah: Xh -3 X* by 

(AhXy )= B (x, y) for all x, y E Xh, 
and fh E X* by 

(fh, (v, q)) = (g, divv), 

the linear system determining the discrete solution can be written in the form (7.1). 
Since Xh is normed with the restriction of the norm in H(div) x H1 and the norm 
in X* is defined by duality, the bounds (7.2) follow directly from the equivalence 
of the B inner product with the inner product in H(div) x H1. Hence we need to 
construct a preconditioner Bh : X- * Xh for which (7.3) holds. 

Now suppose that Xh = Vh x Wh where Vh c H(div) is a Raviart-Thomas 
space and Wh is some standard finite element subspace of H1. As is usual we 
identify V* with Vh so that 

sV11uV sup 
(VI W) 

h 
WC:Vh 1W11H(div)' 

and similarly for Wh*. The operators Eh constructed in the previous sections map 
V*h Vh and satisfy 

e|0h||z(VhVh) and e311 (Vh,V*h) are bounded uniformly in h. 

Moreover, domain decomposition or multigrid can be used to construct bh: Wh* 
Wh such that 

I 'bhjjC(W*,Wh) and I Jcb 1 |(Whw*) are bounded uniformly in h. 

These are the natural requirements for a preconditioner for the Laplacian discretized 
in the usual way using the space Wh. Then, letting 

Bh =( h 0 

(7.2) follows directly. 
To summarize this example: we may precondition the discrete least squares 

system using an H(div) preconditioner for the vector variable and a standard H' 
preconditioner for the scalar variable. 
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A second example is furnished by a mixed method solution to (7.4). This again 
proceeds from the first order system (7.5), but now the weak formulation is to find 

(u*p) E H(div) x L2 such that 

(a-1u,v) + (p,divv) = 0 for all v E H(div), 

(7.6) (div u, q) = (g, q) for all q E L2. 

We shall discretize this using the Raviart-Thomas space Vh of index r for u and 
the space Sh of discontinuous piecewise polynomials of degree r for p, so that the 
discrete weak formulation is to find (Uh, Ph) E Vh X Sh such that 

(a 1Uh, V) + (Ph, divv) = 0 for all v E Vh, 

(7.7) (divuh, q) = (g, q) for all q E Sh. 

This is again a system of the form (7.1), where now Xh = Vh X Sh and Ah: Xh 3 

X* is self-adjoint but indefinite. The bounds (7.2) are a consequence of the stability 
of the Raviart-Thomas elements (cf., [10, Proposition 11.1.3]). 

Note that, since the norm on Sh is the L2 norm, its dual norm coincides with 
itself. Thus the choice of preconditioner is obvious: we take 

(7.8) 3h (0 I) 

where I is the identity on Sh, and then (7.3) holds. Vassilevski and Lazarov arrived 
at the same type of block diagonal preconditioner for the mixed system in [31], al- 
though they did not have available the simple multigrid and domain decomposition 
preconditioners for Ah which we constructed in ?? 4 and 5, and so suggested the 
more complicated operator from [33]. Let us comment on how this choice of pre- 
conditioner differs from other block diagonal preconditioners for the mixed method 
which have been considered. The coefficient operator of the continuous system 
(7.6), 

A (a-1 - grad) 
Vdiv 0 

is an isomorphism from H(div) x L2 onto its dual H(div)* x L2, and the stability 
of the Raviart-Thomas discretization implied that similar mapping properties hold 
for the discrete operator Ah. These mapping properties led naturally to our choice 
of preconditioner. However, it is also true that the continuous operator A defines an 
isomorphism from L2 x H1 onto its dual L2 x H-1. In fact, this is just a recasting 
of the standard H1 -* H-1 isomorphism for the Dirichlet problem for a second 
order elliptic equation. From a corresponding discrete result for the operator Ah, 

and by arguing in an analogous manner as above, we are led to a preconditioner 
for the discrete operator Ah of the form 

(7.9) Bh=(0 )h 

where 4?h : Sh - Sh is a preconditioner for the discrete negative Laplace operator 
- Ah : Sh - Sh given by - div gradh. However, notice that Sh is not a subset of H1 
in the present case (indeed in the simplest case, Sh consists of piecewise constants), 
and the discrete Laplacian is not a standard, or even a local, operator, and so the 
definition of Ih is not obvious. From this point of view, this second approach seems 
less natural than the first. Despite this fact, most of the preconditioners for the 
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system (7.7) which are analyzed in the literature are of the form (7.9) or closely 
related to it. Such preconditioners are, for example, discussed in [27], [28], and 
[29]. In this context, we also mention that many authors have sought to avoid 
the solution of (7.7) when implementing mixed methods by using a reformulation 
of the mixed method as a positive-definite system. This can be accomplished by 
using the Schur complement as in algorithms of Uzawa type, via the introduction 
of additional Lagrange multipliers and elimination of the vector variable, or via the 
use of divergence free bases and elimination of the scalar variable. Examples of 
such approaches can be found in [4], [6], [8], [9], [14], [15],[16], [17], [20], [22], [24], 
[32]. 

Finally, in this section we shall consider an application of the preconditioning of 
the k-dependent operator associated to the bilinear form (6.1). Consider the system 
obtained by applying the mixed finite element method to the singular perturbation 
problem 

k2 _ p-p = g in Q, p = O on &Q, 

with k E (0, 1]. A mixed formulation seeks (up) E H(div) x L2 such that 

(U, v) + k(p, div v) = 0 for all v E H(div), 

k(div u, q) - (p, q) = (g, q) for all q E L2. 

The differential operator 

vaKI -k gradA 
A k div -Ik ) 

defines an isomorphism from H(div) x L2 onto its dual. In fact, equipping H(div) 
with the norm 

u4 (11u112 + k211 div U 12)1/2 

and choosing test functions v = u and q = k div u - p, we easily see that the 
norms of A and A1 are bounded uniformly with respect to k. Therefore we can 
precondition the mixed system with the block diagonal preconditioner (7.8), where 
eh is the domain decomposition or multigrid preconditioner for the k-dependent 
operator on H(div). In view of the uniformity of the bounds on oh discussed in the 
previous section, the resulting block diagonal preconditioner for the mixed method 
is effective uniformly with respect to k and h. 

8. NUMERICAL RESULTS 

In this section we present numerical results which illustrate the multigrid con- 
vergence results of ? 5 and their application to mixed methods, as discussed in 
? 7. 

First we made a numerical study of the condition number of Ah: Vh -- Vh and 
the effect of preconditioning. We took the domain to be the unit square. Bisecting 
the square into two triangles by its negatively sloped diagonal yields the mesh of 
level 1, to which we associate the mesh size h = 1. The level m mesh has half the 
mesh size as the level mr-1 mesh and is formed from it by subdividing each triangle 
into four similar triangles. Thus the level m mesh is a uniform triangulation of the 
square into 22m-1 triangles and has mesh size h = 1/2m1. The space Vh is taken 
as Raviart-Thomas space of index 0 on this mesh. 
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TABLE 1. Condition numbers for the operator Ah and for the pre- 
conditioned operator OhAh, and iteration counts to achieve an 
error reduction factor of 106. 

level h elements dim Vh rz(Ah) Il(ehAh) iterations 
1 1 2 5 38 1.00 1 
2 1/2 8 16 153 1.32 4 
3 1/4 32 56 646 1.68 6 
4 1/8 128 208 2,650 2.17 6 
5 1/16 512 800 10,670 2.34 8 
6 1/32 2,048 3,136 42,810 2.40 8 
7 1/64 8,192 12,416 - - 8 

Table 1 reports the spectral condition number of the discrete operator Ah and the 
preconditioned operator OhAh where oh is the V-cycle multigrid preconditioner 
of ? 5 using one application of the additive Schwarz preconditioner (5.3) with the 
scaling factor q taken to be 1/2. (For the convergence theory of ? 5 we assumed 
that q < 1/3, but other approaches to the convergence theory can be used to raise 
this bound to 2/3, and we found the results slightly better with 'q = 1/2 than 
,q = 1/3.) In order to determine the condition numbers, we computed the matrices 
corresponding to both the unpreconditioned and the preconditioned operator, and 
then calculated their largest and smallest eigenvalues. Of course, this is an expen- 
sive procedure which is never performed in a practical computation, but which we 
carried out to illustrate the theory. The fifth column of Table 1 clearly displays the 
expected growth of the condition number of Ah as O(h-2), and the sixth column 
the boundedness of the condition number of the preconditioned operator ehAh. 

In addition to computing the condition numbers, we solved the equation (1.2) 
using the conjugate gradient method with oh as preconditioner. We arbitrarily 
took f to be the constant unit vectorfield in the vertical direction and started with 
an initial iterate of 0. The final column of Table 1 shows the number of iterations 
required to reduce the initial error by a factor of 106. As expected, the number of 
iterations appears to remain bounded as the mesh is refined. 

As a second numerical study, we used the Raviart-Thomas mixed method to 
solve the factored Poisson equation 

u--gradp, divu=zg in Q, p =0 onOQ. 

We chose g = 2(x ? y2 - X - y) so that p = (X92 x) (y2 - y). The discrete solution 
(Uh, Ph) belongs to the space Vh X Sh, with Vh the Raviart-Thomas space described 
above and Sh the space of piecewise constant functions on the same mesh. We solved 
the discrete equations both with a direct solver and by using the minimum residual 
method preconditioned with the block diagonal preconditioner having as diagonal 
blocks oh and the identity (as discussed in ? 7). Full multigrid was used to initialize 
the minimum residual algorithm. That is, the computed solution at each level was 
used as an initial guess at the next finer level, beginning with the exact solution 
on the coarsest (two element) mesh. In Table 2 we show the condition number 
of the discrete operator Ah and of the preconditioned operator BhAh. While the 
former quantity grows linearly with h-1 (since this is a first order system), the 
latter remains small. 
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TABLE 2. Condition numbers for the indefinite operator Ah corre- 
sponding to the mixed system and for the preconditioned operator 
BhAh. 

level h dim Vh dim Sh ',(Ah) I(BhAh) 

1 1 5 2 8.25 1.04 
2 1/2 16 8 15.0 1.32 
3 1/4 56 32 29.7 1.68 
4 1/8 208 128 59.6 2.18 
5 1/16 800 512 119 2.34 

TABLE 3. Percent relative L2 errors for the mixed method with 
three different solvers for the linear system: direct, 4 iterations of 
the minimum residual method, and 8 iterations of minimum resid- 
ual. 

direct solve minres 4 iter. minres 8 iter. 
level h dim Vh dim Sh u p U p u p 

1 1 5 2 33.33 33.33 33.33 33.33 33.33 33.33 
2 1/2 16 8 38.90 7.49 38.90 7.46 38.90 7.49 
3 i/4 56 32 23.44 2.89 23.50 9.02 23.44 2.89 
4 1/8 208 128 12.30 0.84 12.38 4.48 12.30 0.90 
5 1/16 800 512 6.22 0.22 6.26 1.92 6.22 0.24 
6 1/32 3,136 2,048 3.12 0.05 3.14 0.75 3.12 0.06 
7 1/64 12,416 8,192 1.56 0.01 1.57 0.32 1.56 0.02 

Finally, we studied the contribution of the preconditioned minimum residual 
method to the solution error. To measure the error in the vector variable u, we used 
the relative L2 error fIu - uIIo/IIulo, where u. represents the computed solution. 
The L2 norms were computed using the three point quadrature rule (with edge 
midpoints as quadrature points) on each element and this is reported in Table 3 
as a percent. Note that the reported error involves both the discretization error 
of the mixed method and further errors introduced by the linear solution process. 
To measure the error in the scalar variable p, we compared the piecewise constant 
computed solution to the piecewise constant function p* whose value is obtained on 
each element by averaging the values of the exact solution at the three quadrature 
points of the element; that is, we report IP* -Phi o/ lp*IIo as a percent. We do this 
because p* is a superconvergent quantity: Ip* -Phil o = 0(h2). We see from Table 3 
that for the vector variable u, the full accuracy of the approximation is achieved 
with only four iterations of the minimum residual method, even when the system 
has over 20,000 unknowns. To maintain the full accuracy of the superconvergent 
approximation to p*, more iterations are needed, but for all practical purposes 8 
iterations are sufficient, even for the finest mesh. 

APPENDIX A 

In the foregoing analysis we have assumed that the polygonal domain Q is convex. 
In this appendix we show that the results of ? 4 on domain decomposition can be 
proven without assuming convexity. A careful examination of that section reveals 
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that the only time convexity used was in the application of (3.9) to bound the first 
summand on the right-hand side of (4.5). However, the proof of (3.9) depended on 
2-regularity of the Laplacian, and so fails for a non-convex polygonal domain. 

In the proof of the second inequality in Theorem 4.1 one did not use convexity, 
so only the proof of the first inequality needs to be adapted to the non-convex case. 
Recall that the key to establishing the first inequality was to show that we can 
decompose any u E Vh as _J=o Uj with ue E Vj and satisfying (4.2). To do so, 
we split u as gradh p + curl w via the discrete Helmholtz decomposition, and set 
v = gradhp. In proving (4.2) in the convex case, we defined an approximation 
(Vopo) E Vo x So by vo = gradopo, divvo = Qodivv, where Qo is the L2 
projection into So, and then we bounded the difference liv - oll by cHiI div vII 
using (3.9). Since this fails in the non-convex case, we now introduce an alternate 
approximation, namely we define (iih,Ph) E Vh X Sh by vh = gradh Ph, div'h = 

Qo div v. We shall show below that 

(A.1) lIv - ivhll < cHil div vII. 

Assuming (A.1) for the moment, we now complete the proof of Theorem 4.1 
without the assumption of convexity. From the definitions it follows that 
div('bh - VO) = 0 and hence that i3h - Vo = curlp for some p E Wh of mean 
value zero. Thus, 

u =(v-h) + (ih-vo) + vo + curlw ==(v-ih + vo)+ curl(w + p). 

Note that iiwii1 < cIIuIIH(div) and IIpII1 < c(IIihII + iivoIi) < c|| divv|| < ciiuIIH(div). 

We are now ready to choose the uj. First, we decompose w + p as _J w wj with 

Wj E Wj and EJ-o iiwiij2 <? cIw + pi12. Then curl(w + p) = EJ{0curlwj, 
curl wj E Vj, and 

J 

S A(curl wj, curl wj) < 
cIIw + P112 < cA(u, u). 

j=O 

It thus remains to decompose v - v~h + vo as J =v with v; E VO such that 
>J0 A(vj, vj) < cA(v, v). To do so, we proceed in an analogous manner to the 
earlier proof, setting v; = Hh[Oj(v - h)] for j > 1. This leads to the inequality 

J 

ZA(vj,vj) < 
C[(1 + H2)IIv - Vhi1 + || div(v- vh)ii2], 

j=l 

which is analogous to (4.5), and the proof is completed by invoking (A.1) and 
arguing as before. 

It thus remains to prove (A.l). From the definitions of v and 3h, we get that 

(V- ih, W) + (p-Ph, div w) = 0, for all w E Vh, 
(div[v- ih],q) =-([I-Qo]divv,q), for all qE Sh. 

Choosing w = v - v3h and q = P- Ph and subtracting the equations, we get 

IIv-vh2 =-([I-Qo] divv,p-Ph) =-(divv, [I-Qo][P-Ph]) 

< 11 divvIIII(I-Qo)(P-Ph)II1 
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Hence (A.1) will follow if we can show that 

| (I-QO)(P-Ph) ? <CH| gradh(p- Ph) II CH Iv-VhI1. 

This is an immediate consequence of the following lemma. 

Lemma A.1. There exists a constant c independent of h and H such that 

IIP- QHPII < cH|| gradhpP1, for all p E Sh. 

Proof. We first note that this result was established in the case of a convex domain 
in Lemma 3.1. To extend the proof to the nonconvex case, we first consider a single 
triangle T = TH in the coarse mesh composed of triangles t = th in the fine mesh. 
We define the spaces 

Vh ={ E Vh: v=O on Q \T}, Sh ={PESh:p=OonQ\T}, 

and an operator gradT : ShT ) VhT defined for p E ShT by 

(gradh p, v) =-(p, divv) for all v E VT. 

Now, define PT E S7T by PT = p on T and PT = O on Q \ T. Then 

11 gradh PTIIJT = (grad7T PT, gradT PT) = -(PT, div gradT PT) 

=-(p, div grady PT) = (gradh p, gradT PT) 

(gradhP, gradhT PT)T < ?1 gradhpoT gradh PT|OT, 

so I grad7T PT IO,T < 11 grady p OT Now since the triangle T is convex, we may 
apply (3.8) to PT, obtaining PT - QHPT O ,T < cHII gradh PTT O,T. Therefore 

IIP - QHPI 2= IIPT - QHPTI 0,T ? c2H | gradh PT IO,T 
T T 

<c2H2 E 11 gradp1O,T < c2H211 grad p112. Cl 
T 

APPENDIX B 

We now give a proof of the abstract convergence result, Theorem 5.1, for the 
V-cycle, and the identity (2.1) for the additive Schwarz operator. 

Proof of Theorem 5.1. We shall prove by induction on i that 

(B.1) 0 < AQ([I - iAiu, u) < SA(u, u) for all u E Vj. 

The result for i = 1 is obvious since 91 = A-1. Now assume that (B.1) holds for 
i =j -1. Setting Kj = I-RjAj, it is straightforward to derive the recurrence 
relation (cf. [5]) 

I - jAj = Kj7[(I - PjE ) + (I -Ej-Aj-,)Pj-,]Kj. 

The lower bound easily follows from this identity and the inductive hypothesis. For 
the upper bound, we use the induction hypothesis to obtain 

A([I - EjAj]u, u) < A[I - Pji,]Kju, Kju) + SA(Pjl Kju, Kju) 
= (1 - 6)A([I - Pj-1]Kju, Kju) + SA(Kju, Kju). 
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Now 

A([I - Pjj]K71u [I - Pji]Kju) = A([I - Pjy_]Kju, K7u) 

= ([I-Pj-1]Kmu, AjKju) 

= (Rj- [I - Pji-]K7mu, RjAjKj u) 

(R -1 Pj]mu, [I - P m]K u)l/2 (RjAjKmu, AjKjmu)l/2 

< -iA([I - P]K u, [I - Pji]Kju)/2(RjAj3Kmu, AjKjmu)1/2. 

Hence, 

A([I - Ppi]Kju, Kjmu) < a(RjAjKjmu, AjKju) = aA([I-Kj]Kj2mu, u). 

It follows from the positive semidefiniteness of Rj and from (5.1) that the spec- 
trum of Kj is contained in the interval [0, 1]. Therefore A([I - Kj]Kj2mu, u) < 
A([I - Kj]K3Iu, u) for i < 2m, whence 

2m-1 1 

A[I- Kj]Kj2muvu) < 2 S A([I-Kj]Ku,u) = 
- K 

i=O 

Combining these results, we obtain 

ApI-e3jAj]u, u) < (1-S) 2r A([I - K2m]u, u) + 6A(Ku u, Kj u) 

6) A(u, u) + - (1 - S) 2' A(Kju, Kjmu). 2m 2m1 

The result now follows by choosing 

6 = (1 - 6)a i.e., S= a2. 1 
2m' a+2m 

Proof of (2.1) . Recalling that E0 = Zj PjB1-, and writing v = Ej v;, we have 

(-1vv) = (-1v, vj) = E(BB-l0-1v,vj) = E(BPjB1 Y v,vj) 

< 15(BPjBlElv, B-l-lv) 1/2 (BVj Vj)11/2 

< [E(BPjB- E)-lv, B-'E)-'v)] E (Bvj ,vj)] 

[(Bv, B-1-8 v)] 1/2 EZ(Bv vj) 1/2 

< [(v, )8v)] [12 )j 
1/2 

Hence, (01-v, v) < Z(Bvj, vj), and since the splitting was arbitrary, 

(83-1v, v) < inf (Bvj, vj), 

where the infimum is over all decompositions v = Ej v;. For the choice v; = 

Pj B- -1v, we have that ( - 1v,v) = Ej(Bvj,vj), and so (2.1) holds. El 
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